Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Microbiol ; 76(1): 100-107, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30390102

RESUMO

Bacterial soft rot caused by Dickeya zeae MS1 (Erwinia chrysanthemi) is one of the most devastating banana diseases worldwide. However, knowledge of the development and ecological interactions of D. zeae MS1 biofilm is limited. Here, we visualized the development and architecture of D. zeae MS1 biofilm using confocal laser scanning microscopy, and we evaluated the ability of D. zeae MS1 to form biofilms under different environmental conditions (carbon sources, temperatures, pH levels and mineral elements) using a microtiter plate assay. We found that the development of D. zeae MS1 biofilm could be categorized into four phases and that mature biofilm consisted of a highly organized architecture of both bacterial cells and a self-produced matrix of extracellular polysaccharides. Furthermore, sucrose was the most suitable carbon source for supporting the growth of biofilm cells and that 32 °C and pH 7.0 were the most favorable of the temperatures and pH levels examined. Meanwhile, the addition of Ca2+, Fe2+, K+ and Na+ enhanced the formation of biofilm in minimal medium cultures, whereas 2.5 mM Cu2+ and Mn2+ was inhibitory. A better understanding of biofilm formation under different environmental parameters will improve our knowledge of the growth kinetics of D. zeae MS1 biofilm.


Assuntos
Biofilmes/crescimento & desenvolvimento , Dickeya chrysanthemi/crescimento & desenvolvimento , Dickeya chrysanthemi/metabolismo , Musa/microbiologia , Polissacarídeos Bacterianos/metabolismo , Dickeya chrysanthemi/isolamento & purificação , Meio Ambiente , Microscopia Confocal , Doenças das Plantas/microbiologia , Sacarose/metabolismo
2.
Braz J Microbiol ; 46(3): 791-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413062

RESUMO

One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668) and D. dadantii strain sip4 (accession no. HQ423669). Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.


Assuntos
Bacteriófagos/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Dickeya chrysanthemi/crescimento & desenvolvimento , Dickeya chrysanthemi/virologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Bacteriófagos/classificação , Sequência de Bases , Agentes de Controle Biológico/classificação , DNA Bacteriano/genética , Dickeya chrysanthemi/efeitos dos fármacos , Dickeya chrysanthemi/isolamento & purificação , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Myoviridae/classificação , Myoviridae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Siphoviridae/classificação , Siphoviridae/isolamento & purificação
3.
Braz. j. microbiol ; 46(3): 791-797, July-Sept. 2015. tab, ilus
Artigo em Inglês | LILACS | ID: lil-755811

RESUMO

One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668) and D. dadantii strain sip4 (accession no. HQ423669). Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.

.


Assuntos
Bacteriófagos/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Dickeya chrysanthemi/crescimento & desenvolvimento , Dickeya chrysanthemi/virologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Sequência de Bases , Bacteriófagos/classificação , Agentes de Controle Biológico/classificação , DNA Bacteriano/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Myoviridae/classificação , Myoviridae/isolamento & purificação , Dickeya chrysanthemi/efeitos dos fármacos , Dickeya chrysanthemi/isolamento & purificação , /genética , Análise de Sequência de DNA , Siphoviridae/classificação , Siphoviridae/isolamento & purificação
4.
J Basic Microbiol ; 55(5): 617-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25708938

RESUMO

Strain YL23 was isolated from soybean root tips and identified to be Pseudomonas sp. This strain showed broad-spectrum antibacterial activity against bacterial pathogens that are economically important in agriculture. To characterize the genes dedicated to antibacterial activities against microbial phytopathogens, a Tn5-mutation library of YL23 was constructed. Plate bioassays revealed that the mutant YL23-93 lost its antibacterial activities against Erwinia amylovora and Dickeya chrysanthemi as compared with its wild type strain. Genetic and sequencing analyses localized the transposon in a homolog of the secG gene in the mutant YL23-93. Constitutive expression plasmid pUCP26-secG was constructed and electroporated into the mutant YL23-93. Introduction of the plasmid pUCP26-secG restored antibacterial activities of the mutant YL23-93 to E. amylovora and D. chrysanthemi. As expected, empty plasmid pUCP26 could not complement the phenotype of the antibacterial activity in the mutant. Thus the secG gene, belonging to the Sec protein translocation system, is required for antibacterial activity of strain YL23 against E. amylovora and D. chrysanthemi.


Assuntos
Antibacterianos/metabolismo , Antibiose , Dickeya chrysanthemi/crescimento & desenvolvimento , Erwinia amylovora/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas/fisiologia , Análise por Conglomerados , Análise Mutacional de DNA , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dickeya chrysanthemi/efeitos dos fármacos , Erwinia amylovora/efeitos dos fármacos , Deleção de Genes , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutagênese Insercional , Filogenia , Plasmídeos , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , /microbiologia
5.
J Bacteriol ; 191(17): 5409-18, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19542281

RESUMO

SlyA, a MarR family transcriptional regulator, controls an assortment of biological functions in several animal-pathogenic bacteria. In order to elucidate the functions of SlyA in the phytopathogen Dickeya dadantii (formerly Erwinia chrysanthemi) 3937, a slyA gene deletion mutant (denoted DeltaslyA) was constructed. The mutant exhibited increased sensitivity to sodium hypochlorite, the cationic antimicrobial peptide polymyxin B, and oxidative stress. The mutant showed reduced production of pectate lyase and exopolysaccharide and an inability to form a pellicle. The mutant lacking a functional slyA gene showed a significantly reduced ability to cause maceration of potato tubers. Accordingly, the mutant exhibited significantly reduced bacterial growth and failed to hyperinduce pectate lyase production in planta. Introduction of a plasmid containing slyA into the DeltaslyA mutant caused all of these phenotypes to recover to wild-type levels. These results suggest that SlyA plays an important role in virulence to plants by positively regulating the expression of multiple pathogenicity-related traits of D. dadantii 3937.


Assuntos
Proteínas de Bactérias/fisiologia , Dickeya chrysanthemi/patogenicidade , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Fatores de Transcrição/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/crescimento & desenvolvimento , Deleção de Genes , Oxidantes/farmacologia , Raízes de Plantas/microbiologia , Polimixina B/farmacologia , Polissacarídeo-Liases/metabolismo , Polissacarídeos Bacterianos/metabolismo , Hipoclorito de Sódio/farmacologia , Fatores de Transcrição/genética , Virulência
6.
Plant Physiol ; 150(4): 1687-96, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19448037

RESUMO

Siderophores (ferric ion chelators) are secreted by organisms in response to iron deficiency. The pathogenic enterobacterium Erwinia chrysanthemi produces two siderophores, achromobactin and chrysobactin (CB), which are required for systemic dissemination in host plants. Previous studies have shown that CB is produced in planta and can trigger the up-regulation of the plant ferritin gene AtFER1. To further investigate the function of CB during pathogenesis, we analyzed its effect in Arabidopsis (Arabidopsis thaliana) plants following leaf infiltration. CB activates the salicylic acid (SA)-mediated signaling pathway, while the CB ferric complex is ineffective, suggesting that the elicitor activity of this siderophore is due to its iron-binding property. We confirmed this hypothesis by testing the effect of siderophores structurally unrelated to CB, including deferrioxamine. There was no activation of SA-dependent defense in plants grown under iron deficiency before CB treatment. Transcriptional analysis of the genes encoding the root ferrous ion transporter and ferric chelate reductase, and determination of the activity of this enzyme in response to CB or deferrioxamine, showed that these compounds induce a leaf-to-root iron deficiency signal. This root response as well as ferritin gene up-regulation in the leaf were not compromised in a SA-deficient mutant line. Using the Arabidopsis-E. chrysanthemi pathosystem, we have shown that CB promotes bacterial growth in planta and can modulate plant defenses through an antagonistic mechanism between SA and jasmonic acid signaling cascades. Collectively, these data reveal a new link between two processes mediated by SA and iron in response to microbial siderophores.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Dickeya chrysanthemi/metabolismo , Fenômenos do Sistema Imunitário/efeitos dos fármacos , Ferro/metabolismo , Sideróforos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Dickeya chrysanthemi/efeitos dos fármacos , Dickeya chrysanthemi/crescimento & desenvolvimento , Dipeptídeos/farmacologia , Etilenos/metabolismo , FMN Redutase/genética , FMN Redutase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Quelantes de Ferro/farmacologia , Modelos Biológicos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos
7.
Plant J ; 58(2): 195-207, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19121106

RESUMO

AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3 nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron-deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot-to-root signal reminiscent of an iron-deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte de Cátions/metabolismo , Dickeya chrysanthemi/crescimento & desenvolvimento , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , DNA de Plantas/genética , Ferritinas/genética , Ferritinas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Imunidade Inata , Deficiências de Ferro , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
8.
Mol Plant Pathol ; 9(1): 11-24, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18705880

RESUMO

In addition to the important role of abscisic acid (ABA) in abiotic stress signalling, basal and high ABA levels appear to have a negative effect on disease resistance. Using the ABA-deficient sitiens tomato (Solanum lycopersicum) mutant and different application methods of exogenous ABA, we demonstrated the influence of this plant hormone on disease progression of Erwinia chrysanthemi. This necrotrophic plant pathogenic bacterium is responsible for soft rot disease on many plant species, causing maceration symptoms mainly due to the production and secretion of pectinolytic enzymes. On wild-type (WT) tomato cv. Moneymaker E. chrysanthemi leaf inoculation resulted in maceration both within and beyond the infiltrated zone of the leaf, but sitiens showed a very low occurrence of tissue maceration, which never extended the infiltrated zone. A single ABA treatment prior to infection eliminated the effect of pathogen restriction in sitiens, while repeated ABA spraying during plant development rendered both WT and sitiens very susceptible. Quantification of E. chrysanthemi populations inside the leaf did not reveal differences in bacterial growth between sitiens and WT. Sitiens was not more resistant to pectinolytic cell-wall degradation, but upon infection it showed a faster and stronger activation of defence responses than WT, such as hydrogen peroxide accumulation, peroxidase activation and cell-wall fortifications. Moreover, the rapid activation of sitiens peroxidases was also observed after application of bacteria-free culture filtrate containing E. chrysanthemi cell-wall-degrading enzymes and was absent during infection with an out E. chrysanthemi mutant impaired in secretion of these extracellular enzymes.


Assuntos
Ácido Abscísico/farmacologia , Dickeya chrysanthemi/patogenicidade , Doenças das Plantas/microbiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Parede Celular/metabolismo , Parede Celular/microbiologia , Contagem de Colônia Microbiana , Dickeya chrysanthemi/crescimento & desenvolvimento , Suscetibilidade a Doenças/microbiologia , Genótipo , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Mutação , Peroxidases/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
9.
Appl Environ Microbiol ; 74(17): 5285-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18641153

RESUMO

Several outbreaks of Escherichia coli O157:H7 infections have been associated with minimally processed leafy vegetables in the United States. Harvesting and processing cause plant tissue damage. In order to assess the role of plant tissue damage in the contamination of leafy greens with E. coli O157:H7, the effect of mechanical, physiological, and plant disease-induced lesions on the growth of this pathogen on postharvest romaine lettuce was investigated. Within only 4 h after inoculation, the population sizes of E. coli O157:H7 increased 4.0-, 4.5-, and 11.0-fold on lettuce leaves that were mechanically bruised, cut into large pieces, and shredded into multiple pieces, respectively. During the same time, E. coli O157:H7 population sizes increased only twofold on leaves that were left intact after harvest. Also, the population size of E. coli O157:H7 was 27 times greater on young leaves affected by soft rot due to infection by Erwinia chrysanthemi than on healthy middle-aged leaves. Confocal microscopy revealed that leaf tip burn lesions, which are caused by a common physiological disorder of lettuce, harbored dense populations of E. coli O157:H7 cells both internally and externally. Investigation of the colonization of cut lettuce stems by E. coli O157:H7 showed that the pathogen grew 11-fold over 4 h of incubation after its inoculation onto the stems, from which large amounts of latex were released. The results of this study indicate that plant tissue damage of various types can promote significant multiplication of E. coli O157:H7 over a short time and suggest that harvesting and processing are critical control points in the prevention or reduction of E. coli O157:H7 contamination of lettuce.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , /microbiologia , Contagem de Colônia Microbiana , Dickeya chrysanthemi/crescimento & desenvolvimento , Surtos de Doenças , Infecções por Escherichia coli/epidemiologia , Humanos , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Caules de Planta/microbiologia , Estados Unidos/epidemiologia
10.
J Food Prot ; 71(12): 2384-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19244888

RESUMO

The ecology of the vegetable leaf surface is important to the survival of enteric pathogens. Understanding changes in ecological parameters during the preharvest stages of production can lead to development of approaches to minimize the hazard of contamination of fresh fruits and vegetables with foodborne pathogens. In this study, survival levels of Escherichia coli O157 over a 10-day period were compared among traumatically injured, phytopathogen-damaged, and healthy lettuce plants. Leaves from lettuce plants cracked along the central vein, plants infected with Xanthomonas campestris pv. vitians, and healthy plants were inoculated with E. coli O157:H7. The presence of E. coli O157:H7 populations on inoculated leaves and non-inoculated leaves of these same plants was determined for 10 days. The density of E. coli O157:H7 decreased over time on the inoculated leaves regardless of the treatment. The population of E. coli O157:H7 remained higher on traumatically injured leaves than on healthy plants (P < 0.001). E. coli O157:H7 was detected on leaves other than the direct inoculation site of the enteric pathogen in all three treatments groups. Preharvest damage, especially that caused by traumatic injury, impacted the survivability of E. coli O157:H7. Maintaining healthy plants and minimizing physical damage around the time of harvest might improve the safety of fresh produce.


Assuntos
Infecções por Escherichia coli/epidemiologia , Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , /microbiologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Dickeya chrysanthemi/crescimento & desenvolvimento , Surtos de Doenças , Infecções por Escherichia coli/etiologia , Microbiologia de Alimentos , Humanos , Fatores de Tempo
11.
Mol Plant Microbe Interact ; 20(7): 794-805, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17601167

RESUMO

Many taxonomically diverse plant species are attacked by Erwinia chrysanthemi, a member of the causal agents of soft-rotting diseases. Symptom development is due to the collective action of pectin-degrading enzymes secreted by the bacterium through a type II secretion system (T2SS). Using Arabidopsis thaliana as a susceptible host, we show that plants respond to E. chrysanthemi 3937 by expressing cell-wall reactions, production of an oxidative burst, and activation of salicylic acid (SA) and jasmonic acid (JA) or ethylene (ET) signaling pathways. We found that the oxidative burst is mainly generated via the expression of the AtrbohD gene, constitutes a barrier of resistance to bacterial attack, and acts independently of the SA-mediated response. To determine the importance of T2SS-secreted proteins in elicitation of these defenses, we used a T2SS deficient mutant and purified enzymatic preparations of representative members of strain 3937 pectate lyase activity. The T2SS-secreted proteins were responsible only partially for the activation of SA and JA or ET signaling pathways observed after infection with the wild-type bacterium and were not involved in the expression of other identified defense reactions. Our study shows the differential role played by pectate lyases isoenzymes in this process and highlights the complexity of the host immune network, which is finely controlled by the bacterium.


Assuntos
Arabidopsis/microbiologia , Parede Celular/metabolismo , Dickeya chrysanthemi/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/ultraestrutura , Ciclopentanos/metabolismo , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/ultraestrutura , Etilenos/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucanos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Eletrônica de Transmissão , Mutação , Oxilipinas , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Salicílico/metabolismo , Transdução de Sinais
12.
Mol Plant Microbe Interact ; 20(3): 313-20, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17378434

RESUMO

Salicylic acid (SA) is an important signaling molecule in local and systemic plant resistance. Following infection by microbial pathogens and the initial oxidative burst in plants, SA accumulation functions in the amplification of defense gene expression. Production of pathogenesis-related proteins and toxic antimicrobial chemicals serves to protect the plant from infection. Successful microbial pathogens utilize a variety of mechanisms to rid themselves of toxic antimicrobial compounds. Important among these mechanisms are multidrug-resistance pumps that bring about the active efflux of toxic compounds from microbial cells. Here, we show that a combination SA and its precursors, t-cinnamic acid and benzoic acid, can activate expression of specific multidrug efflux pump-encoding genes in the plant pathogen Erwinia chrysanthemi and enhance survival of the bacterium in the presence of model as well as plant-derived antimicrobial chemicals. This ability of plant-pathogenic bacteria to co-opt plant defense-signaling molecules to activate multidrug efflux pumps may have evolved to ensure bacterial survival in susceptible host plants.


Assuntos
Proteínas de Bactérias/genética , Dickeya chrysanthemi/genética , Genes Bacterianos , Proteínas de Bactérias/metabolismo , Ácido Benzoico/farmacologia , Transporte Biológico/efeitos dos fármacos , Cinamatos/farmacologia , Dickeya chrysanthemi/crescimento & desenvolvimento , Dickeya chrysanthemi/metabolismo , Resistência Microbiana a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Immunoblotting , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Salicílico/farmacologia
13.
J Theor Biol ; 244(2): 239-57, 2007 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-17005207

RESUMO

Building up from experimental knowledge of the regulatory network of the pel genes in the bacteria E. chrysanthemi, we propose for the first time a qualitative modeling of the infectious transition of this bacteria when it is hosted in a plant. We show that this infectious transition can be understood as the excitable dynamics of a metabolico-genetic network. Our mathematical model can account for the main phases which are observed in the onset of the pathogenecity by Erwinia chrysanthemi, namely the silent, latent and virulent stages. Like in many infectious agents, the silent state corresponds to the growth phase of the bacteria, where they multiply without significantly producing molecules which could trigger a counter attack of the invaded host. The latent stage is characterized by a moderate but unequivocal expression of the virulence gene, waiting for a number of conditions which have to fulfill in order to trigger a fully developed infection. In the virulent state the bacteria synthesize a massive production of virulence factors including pectate lyases (Pel) which favor the invasion of the host plant tissues. Our model is able to show cases of transitions from the silent to the virulent stages of the infection, using the method of the piecewise-affine (PA) differential equations and its implementation in the genetic network analyser software (GNA). The obtained qualitative dynamics of the models are consistent with the current experimental data about this system. Moreover it can be interpreted with respect to the relatively complex structure of the binding sites of pel. From the biological point of view, our simulations validate the picture that the promoter of pel has evolved to form a security device preventing a hastened expression of these virulent genes. This first modeling of the regulation of pel genes opens the way to new confrontations between theoretical ideas with experiments and possible strategies to fight the soft-rot disease of plants.


Assuntos
Dickeya chrysanthemi/patogenicidade , Modelos Genéticos , Doenças das Plantas/microbiologia , Dickeya chrysanthemi/enzimologia , Dickeya chrysanthemi/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Polissacarídeo-Liases/biossíntese , Polissacarídeo-Liases/genética , Regiões Promotoras Genéticas , Virulência/genética
14.
Mol Plant Microbe Interact ; 19(6): 607-13, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16776294

RESUMO

The role of several multidrug resistance (MDR) systems in the pathogenicity of Erwinia chrysanthemi 3937 was analyzed. Using the blast algorithm, we have identified several MDR systems in the E. chrysanthemi genome and selected two acridine resistance (Acr)-like systems, two Emr-like systems, and one member of the major facilitator super-family family to characterize. We generated mutants in genes encoding for these systems and analyzed the virulence of the mutant strains in different hosts and their susceptibility to antibiotics, detergents, dyes, and plant compounds. We have observed that the mutant strains are differentially affected in their virulence in different hosts and that the susceptibility to toxic substances is also differential. Both Acr systems seem to be implicated in the resistance to the plant antimicrobial peptide thionin. Similarly, the emr1AB mutant is unable to grow in the presence of the potato protein tuber extract and shows a decreased virulence in this tissue. These results indicate that the function of these systems in plants could be related to the specificity to extrude a toxic compound that is present in a given host.


Assuntos
Proteínas de Bactérias/fisiologia , Dickeya chrysanthemi/patogenicidade , Genes MDR , Doenças das Plantas/microbiologia , Plantas/microbiologia , Proteínas de Bactérias/genética , Clonagem Molecular , Biologia Computacional , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/crescimento & desenvolvimento , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Folhas de Planta/microbiologia , Solanum tuberosum/anatomia & histologia , Solanum tuberosum/microbiologia
15.
J Bacteriol ; 187(6): 2157-62, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743964

RESUMO

Erwinia chrysanthemi is a phytopathogenic bacterium that causes soft-rot diseases in a broad number of crops. The PhoP-PhoQ system is a key factor in pathogenicity of several bacteria and is involved in the bacterial resistance to different factors, including acid stress. Since E. chrysanthemi is confronted by acid pH during pathogenesis, we have studied the role of this system in the virulence of this bacterium. In this work, we have isolated and characterized the phoP and phoQ mutants of E. chrysanthemi strain 3937. It was found that: (i) they were not altered in their growth at acid pH; (ii) the phoQ mutant showed diminished ability to survive at acid pH; (iii) susceptibility to the antimicrobial peptide thionin was increased; (iv) the virulence of the phoQ mutant was diminished at low and high magnesium concentrations, whereas the virulence of the phoP was diminished only at low magnesium concentrations; (v) in planta Pel activity of both mutant strains was drastically reduced; and (vi) both mutants lagged behind the wild type in their capacity to change the apoplastic pH. These results suggest that the PhoP-PhoQ system plays a role in the virulence of this bacterium in plant tissues, although it does not contribute to bacterial growth at acid pH.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/metabolismo , Dickeya chrysanthemi/metabolismo , Dickeya chrysanthemi/patogenicidade , Pectinas/metabolismo , Ácidos/metabolismo , Meios de Cultura , Dickeya chrysanthemi/crescimento & desenvolvimento , Farmacorresistência Bacteriana , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Virulência
16.
Appl Environ Microbiol ; 70(11): 6535-41, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15528516

RESUMO

Erwinia chrysanthemi is a phytopathogenic soil enterobacterium closely related to Escherichia coli. Both species respond to hyperosmotic pressure and to external added osmoprotectants in a similar way. Unexpectedly, the pools of endogenous osmolytes show different compositions. Instead of the commonly accumulated glutamate and trehalose, E. chrysanthemi strain 3937 promotes the accumulation of glutamine and alpha-glucosylglycerate, which is a new osmolyte for enterobacteria, together with glutamine. The amounts of the three osmolytes increased with medium osmolarity and were reduced when betaine was provided in the growth medium. Both glutamine and glutamate showed a high rate of turnover, whereas glucosylglycerate stayed stable. In addition, the balance between the osmolytes depended on the osmolality of the medium. Glucosylglycerate and glutamate were the major intracellular compounds in low salt concentrations, whereas glutamine predominated at higher concentrations. Interestingly, the ammonium content of the medium also influenced the pool of osmolytes. During bacterial growth with 1 mM ammonium in stressing conditions, more glucosylglycerate accumulated by far than the other organic solutes. Glucosylglycerate synthesis has been described in some halophilic archaea and bacteria but not as a dominant osmolyte, and its role as an osmolyte in Erwinia chrysanthemi 3937 shows that nonhalophilic bacteria can also use ionic osmolytes.


Assuntos
Dickeya chrysanthemi/fisiologia , Glutamatos/metabolismo , Glutamina/metabolismo , Glicolipídeos/metabolismo , Equilíbrio Hidroeletrolítico , Betaína/metabolismo , Meios de Cultura , Dickeya chrysanthemi/crescimento & desenvolvimento , Dickeya chrysanthemi/metabolismo , Concentração Osmolar , Pressão Osmótica
17.
J Bacteriol ; 186(16): 5547-50, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15292161

RESUMO

Cellular components necessary for osmoprotection are poorly known. In this study we show that O antigen is specifically required for the effectiveness of betaines as osmoprotectants for Erwinia chrysanthemi in saline media. The phenotype is correlated with the inability of rfb mutant strains to maintain a high accumulation level of betaines in hypersaline media.


Assuntos
Betaína/metabolismo , Dickeya chrysanthemi/química , Dickeya chrysanthemi/fisiologia , Antígenos O/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Meios de Cultura/química , Elementos de DNA Transponíveis , Dickeya chrysanthemi/crescimento & desenvolvimento , Genes Bacterianos , Família Multigênica , Mutagênese Insercional , Mutação , Concentração Osmolar , Solução Salina Hipertônica
18.
Res Microbiol ; 155(2): 71-5, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14990257

RESUMO

Type II systems allow for the secretion of numerous enzymes and toxins in several Gram-negative pathogens. In Erwinia chrysanthemi, 14 Out proteins are necessary for building the type II apparatus. We performed a systematic two-hybrid analysis to test interactions between the periplasmic regions of the Out proteins. Results obtained using this approach suggested that OutJ (a pseudopilin) was able to interact with (i) OutD, the outer membrane secretin, (ii) OutI, mainly located in the periplasm, and (iii) OutL, an inner membrane protein. Taken together, these results suggest that OutJ is involved in multiple partnerships. Implications of these partnerships in the overall architecture of the type II secretion machinery are discussed.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Dickeya chrysanthemi/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/crescimento & desenvolvimento , Técnicas do Sistema de Duplo-Híbrido
19.
Mol Plant Microbe Interact ; 17(2): 184-94, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14964532

RESUMO

The plant pathogen Erwinia chrysanthemi produces a variety of factors that have been implicated in its ability to cause soft-rot diseases in various hosts. These include HrpN, a harpin secreted by the Hrp type III secretion system; PelE, one of several major pectate lyase isozymes secreted by the type II system; and PelL, one of several secondary Pels secreted by the type II system. We investigated these factors in E. chrysanthemi EC16 with respect to the effects of medium composition and growth phase on gene expression (as determined with uidA fusions and Northern analyses) and effects on virulence. pelE was induced by polygalacturonic acid, but pelL was not, and hrpN was expressed unexpectedly in nutrient-rich King's medium B and in minimal salts medium at neutral pH. In contrast, the effect of medium composition on hrp expression in E. chrysanthemi CUCPB1237 and 3937 was like that of many other phytopathogenic bacteria in being repressed in complex media and induced in acidic pH minimal medium. Northern blot analysis of hrpN and hrpL expression by the wild-type and hrpL::omegaCmr and hrpS::omegaCmr mutants revealed that hrpN expression was dependent on the HrpL alternative sigma factor, whose expression, in turn, was dependent on the HrpS putative sigma54 enhancer binding protein. The expression of pelE and hrpN increased strongly in late logarithmic growth phase. To test the possible role of quorum sensing in this expression pattern, the expI/expR locus was cloned in Escherichia coli on the basis of its ability to direct production of acyl-homoserine lactone and then used to construct expI mutations in pelE::uidA, pelL::uidA, and hrpN::uidA Erwinia chrysanthemi strains. Mutation of expI had no apparent effect on the growth-phase-dependent expression of hrpN and pelE, or on the virulence of E. chrysanthemi in witloof chicory leaves. Overexpression of hrpN in E. chrysanthemi resulted in approximately 50% reduction of lesion size on chicory leaves without an effect on infection initiation.


Assuntos
Dickeya chrysanthemi/genética , Polissacarídeo-Liases/genética , Northern Blotting , Clonagem Molecular , Dickeya chrysanthemi/enzimologia , Dickeya chrysanthemi/crescimento & desenvolvimento , Dickeya chrysanthemi/patogenicidade , Regulação Bacteriana da Expressão Gênica , Isoenzimas/genética , Dados de Sequência Molecular , Mutagênese , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Transcrição Gênica , Virulência
20.
J Ind Microbiol Biotechnol ; 27(4): 215-9, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11687933

RESUMO

Whole cells of the phytopathogenic Erwinia chrysanthemi strains were immobilized in k-carrageenan and grown in high-calcium Xanthomonas campestris medium containing sodium polypectate as carbon source. All the strains used survived immobilization into k-carrageenan beads. Immobilized E. chrysanthemi strains displayed higher pectolytic and proteolytic enzyme activities than free cells in liquid suspension. Carrageenan immobilization techniques could provide a system to mimic the conditions of E. chrysanthemi cells in the infected plant tissue. This could prompt a thorough study of the factors governing the biosynthesis of virulence factors by this bacterium.


Assuntos
Dickeya chrysanthemi/enzimologia , Dickeya chrysanthemi/crescimento & desenvolvimento , Endopeptidases/metabolismo , Polissacarídeo-Liases/metabolismo , Carragenina , Células Imobilizadas , Meios de Cultura , Dickeya chrysanthemi/classificação , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...